WAVES IN FERROMAGNETIC FLUIDS

B.M. Berkovskii and V. G. Bashtovoi UDC 532.511.538.6

It is shown that in viscous heat conductive ferromagnetic liquids with infinite conductivity
under definite thermal conditions, slightly damped and undamped temperature and magneto-
hydrodynamic waves are propagated. The lengths and frequencies of the undamped waves
are found. The physical mechanism of their excitation is discussed.

It has been established in [1] that slightly damped temperature and viscous low~frequency waves are
propagated in a viscous heat conducting fluid in permanent gravitational and special temperature fields. It
has been established successfully in [2] that the frequency band and lengths of waves which can be propagated
with a2 small damping decrement is broadened in viscoelastic Maxwellian fluids. Because of the interaction
between the magnetic moment per unit volume of fluid and the external magnetic field in ferromagnetic
fluids, an improvement in the characteristics of the slightly damped temperature and magnetohydrodynam-
ic waves should also be expected. The present paper studies this question,

Let us formulate the system of equations describing the nonstationary convective heat exchange pro-
cesses in vsicous heat conducting ferromagnetic fluidg with infinite conductivity in external magnetic fields:

divB =0, 1

0B =rot v x B], 2)

B=upuH+M, (3)

M=M(H, T), @)

9,p -+ div (ov) = 0, (5)

P[0y + (VV) V] = —yp -+ [rot H x Bl -+ nAv + (; - %) grad div v+ 1~y (MB), (6)
Yo

pc, OT +vyT)=M~AT, (7)

flo, p, T)=0. (8)

Since we shall henceforth examine small amplitude waves, the transport coefficients were considered
constant in deriving (1)=(8), and energy dissipation due to viscosity and the magnetocaloric effect was ne-
glected.

A system of governing equations was obtained in [3] for a non-conducting incompressible fluid. Ques-
tions of the stability of the plane free surface of a ferromagnetic fluid in a magnetic field have been examined
in [4-6].

Let us consider the propagation of small perturbations in a mechanical equilibrium background in a
nonideal ferromagnetic fluid with infinite conductivity, in a homogeneous permanent magnetic field Hy di-
rected along the x axis, when a constant temperature gradient VT, =7 directed along the y axis is present
in the fluid,

A gradient M, is built up in the mechanical equilibrium state in the fluid because of the dependence
M(T)
oM

M, = B,y, wh =2 .
v M, = By, where B, ( aT )Ho.To
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Following the known method of analysis [7], let us assume
H=H0+h1 P=Po+9’. P=po+p', T::Tﬂ—-}—e, V%O

We shall conduct the further investigation in a first approximation, i.e., we shall neglect the products of
the small quantities h, p', p', 6, v. - Let us examine the one-dimensional problem and let us consider them
to depend all on x and . In this approximation

H=H,+h, 3ndM:M0+Blhx+5ze: 51:(—%) .
aH Ho,Tq

Neglecting the anisotropies of the medium, we assume the vectors B, M, and H to be parallel. Then

» 1B M M
M=M0—<.—~—-—L)th + 2o n g Mo
H,& M, ° " H, By M,

and
1 By (M M
B=B,— [ — P )pm ( ———i)h oM
0 (Ho Mo) b 4 { o+ H, + B M,

Limiting ourselves to the analysis of transverse velocity perturbations, let us depict the system (1)-(8) ac-
cording to the components:

(1o - B) 0.0, + B,0.0 + Bav/H ) hy =0, 9

(o + By) Ohr, + 800 + Yﬂzvy =0, (10)

O, = Hd.0, 1)

002, = Bydchy -+ 15t [Ba (o + 2B1) + My + By) 03] vh, + 157! [2B3 + 01 (M, + B)] ¥0 + 2o, (12)
09 + v, = %0, (13)

where o = (82M/ 3T2)Ho, T,and oy = (6*°M/ oH aT)HO,T . Let us consider M to be a linear function of the
temperature, as is valid for small changes. Then gy =0 and o, = 8,85/ M,.

Perturbations of the Z-component of the magnetic field and of the velocity are propagated in the form
of Alfven waves; hence, we shall not consider them.

To clarify the physicalpicture of the processes which occur, let us first consider an ideal fluid, i.e.,
letus put n = %= 0 in (12) and (13). Then the components hy, vy, and ¢ satisfy a wave equation of the form

20 = U256 — w36, (14)
where wzﬁ =2Y2B2/uop

The propagation of transverse fluctuations in hy and vy ina conducting fluid placed in a magnetic field
can be given a graphic physical interpretation [7]. It follows from (2) that

d, (B/p) = BV ]V,

where
d, = 9;+ (Vv). 1s)

This is the condition of "freezing" the lines of force of magnetic field induction in the fluid, i.e., this means
that each line of force is displaced together with the fluid particles thereon. Therefore, every transverse
shift in the fluid causes a transverse shift in the line of forces which, because of the elasticity of the line
of force, starts to be transmitted along it as a wave. Hence, each line of force of the magnetic field induc-
tion can be likened to a string along which small fransverse oscillations are propagated, If we deal with a
ferromagnetic medium, then a force [8] ug 1p(MB) acts per unit volume of this string, and we obtain the
oscillations of a string subjected to external forces. Part of this force py 1y M,B,) is equilibrated by the
pressure gradient ¥p, in the state of mechanical equilibrium, The rest of this force is iy = 27 ,8%%' 19 and
is a stimulating force. It follows from (7) that d¢T = 0 in an ideal fluid, which yields the condition of
"freezing" of the isotherms in the fluid in the same sense as the "freezing" of the lines of magnetic field
induction. Therefore, the isotherms and the lines of force of magnetic field induction are interrelated,

and the former take on the elasticity of the latter. Hence, the propagation of transverse oscillations over
the lines of force of magnetic field induction causes propagation of oscillations over the isotherms at the
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same velocity, as is described by (14). Therefore, we obtain the propagation of temperature waves. Be-
cause of the presence of the stimulating force, it can be expected that undamped waves will be propagated
under definite conditions in a ferromagnetic fluid in the presence of viscosity and heat conductivity. The
energy losses in this case will be made up because of the magnetic field energy.

Taking account of viscosity and heat conductivity, the temperature perturbation satisfies the following
wave equation

30 =UL20— a0+ [ (2320 — U208 + 0 (2—a) 20— v3 0,0} di -+ v} 0, (16)

where
o = g (3 — B Ho/M)/2 (g + By,

from which the dispersion equation
of (1 — o) xk?

io (fo —vk%) - U2 B2+ @2
( ) a®t O [0 — nk? !

amn

follows for the solution in the form of the plane wave expi(kx—wt).

In this case (7) yields diT = wAT, and the isotherms are already not "frozen" in the sense understood
earlier. Now a phage shift exists between the temperature changes and the fluid particle displacement,
which is not 0 or 7. A force

fro=—2u5" By [(1 — )8 + ¥ 2 — ) 8],

now acts per unit volume of fluid, whose change is determined by the change in ¢ and y. Therefore, a phase
shift exists between the change in force and the fluid particle displacement, for a definite value of which

the work performed by this force can be positive, In fact, if the particle displacement varies according to
the law

Yy =acos(kx—ot), a>0,

and the force according to the law
f = Fcos (kx — ot + @) = bcos (kx — wt) + csin(ky — of),

then the work of this force per unit time is A = fy; y = 8¢y, and the mean work per period is
T
A=T j fuidt =
[¢]
If the phase shift were a multiple of 7, ¢ = 0, the mean work per period of this force would be zero, and
for ¢ > 0 which corresponds toa phaseshift from 7 to 27 it is positive. Inour case, if

acm
2

y = a'e—*:* cos (kyx — of) = acos (kx — wt),

then it follows from (13) that

wya

b=— (B2 — R2F + (o — 2nksky)

[x (k2 — k2) sin (kyx — of) — (0 — 2xk,k,) cos (R, x — mt)] .
A viscosity force fp = naﬁ{y acts per unit volume of fluid, and its mean work per period is
T
- B . 1
A, =T 1§ foudt = — > nate? (k% — k),
0

where k; and ky are found from the solution of the dispersion equation (17) and only those values of ky and k,
satisfying the inequality |k, | > |k, | have any physical meaning since otherwise the mean work per period of
the viscosity forces would be positive.

The mean work per period of the magnetic field force fiy, equals
% (B2 — kD)
*? (k2 — h2)® + (0 — 2nk;k,)?

_ 1
A, = o powiae’ (1 — a)

and is positive for 1—a > 0. If B = youpH, then o = (1/up) < 1 for ferromagnets, and this condition is satis-
fied .
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On the average, the viscosity and magnetic field forces perform the work
1

_ of (1 —a)x
— .02 (B2 — B |- b -
e 1 e ¢

(18)
per period.

1. For a negative value of this expression (the work of the magnetic field forces is less than the work
of the viscosity forces), damped wave propagation should be expected.,

2. When Ay, + AR = 0, waves with constant amplitude should be propagated.
3. When Ay, +AR > 0, the amplitude of the waves should grow.

Indeed, it is easy to obtain from the dispersion equation (17) (by putting k = k) + ik, and equating real
and imaginary parts to zero) that

kyky = —

o (k2 — k2 [ of (1—a)x
202 W (k2 — kY% + (0 — 2ukiky)* v}

Since ky = 27/A >0, thenk; > 0 upon compliance with condition 1, which corresponds to a damped
wave, ky = 0 upon compliance with condition 2, andthe wave amplitude is constant, and k, < 0 upon compliance
with condition 3, and the wave amplitude grows, as should have been expected from the preceding reasoning,

For ky = 0 the dispersion equation (17) yields

2 4 2
Bl = — Ve _J[_‘/ Uo - _ “e [l—l(1~—a)]’
2 (v %) 4% (v -+ %) % (Vv 4 %) v

®

mzu%§;@+%a—@v+”

It should be noted that taking account of the gravitational field force can strengthen the results ob-
tained above, i.e., under definite conditions the gravitational field can also supply energy to the wave.

NOTATION

e

are the magnetic field induction and intensity vectors in the fluid;
is the magnetic moment vector per unit volume of fluid;

is the magnetic permittivity of vacuum;

is the fluid velocity vector;

are the fluid temperature, density, and pressure;

is the coefficient of fluid conductivity;

are the first and second fluid viscosities, respectively;

are the coefficients of fluid heat and temperature conductivity;
is the kinematic fluid viscosity;

is the wave frequency;

is the wave number;

=1

K=
=l

-

>3 a H<4T B
X ¢y

® g <

X = 8/ 8X',
=By/Vup, is the Alfven velocity.
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